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Highly convergent dynamic models obtained by modal synthesis
with application to short wave pulse propagation

Rimantas Barauskas∗,† and Ramute Barauskiene

Department of System Analysis, Kaunas University of Technology, Lithuania

SUMMARY

A general approach for obtaining the matrices of a substructure ensuring minimum modal frequency
errors of the whole structure is presented. The mass and stiffness matrices of a small component
domain of selected dimension are obtained by applying the modal synthesis of a limited number of
close-to-exact modes such that after assembling a larger joined domain model the modal convergence
rate of the latter should be as high as possible. The goal is achieved by formulating the minimization
problem for the penalty-type target function representing the cumulative relative modal frequency
error of the joined sample domain and by applying the gradient descent minimization method. After
the optimum matrices of a component domain are obtained, they can be used in any structure as
higher-order elements or super-elements. The well-known generalized mass matrices obtained as a
weighted sum of lumped and consistent components can be treated as a special case of the presented
approach. The obtained dynamic models are used for modelling short transient waves and wave pulses
propagating in elastic or acoustic environments by using a only a few nodal points per pulse length.
Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer simulation of wave propagation processes is of key importance for solution of very
different engineering problems. As one of many applications, the wave propagation modelling
is widely used during development of ultrasonic measurement schemes and procedures in order
to get insight into wave propagation and transformation phenomena taking place inside of the
analysed domain. Identification and recognition of internal defects in continuous structures or
detection of impurity particles or coagulation centres in liquids can be mentioned as ultrasonic
measurement application examples where frequencies from 20–30kHz to 3–5MHz may be used.
Computer modelling of such wave processes presents an important and challenging application
field in computational mechanics as the short wavelength causes some modelling difficulties. In
this work the term ‘short wavelength’ is used in order to indicate that the length of the wave
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or pulse is many times less than the dimensions of the domain in which it is propagating. For
example, the problems of practical value encountered in simulations of ultrasonic measurement
processes require the product (wave number) × (characteristic dimension of the domain) to be
near to 100 or even 1000.

The propagating short wavelength pulse simulated in a discrete mesh is inevitably distorted.
The amount of distortion grows rapidly as the distance travelled by the pulse comprises a
considerable number of lengths of the pulse. An important source of the distortions of the
pulse shape seems to be the phase error produced by the model. For example, in linear models
different harmonic components of a longitudinal wave are travelling with slightly different phase
velocities, though in the exact mathematical model the phase velocities of all the components
are assumed to be the same. Such phase errors produced by the discrete model are highly
undesirable as after some propagation distance the shape and duration of the simulated pulse
become very different from the values expected theoretically. The consequences of amplitude
errors upon the overall performance of the model are not so crucial, though also undesirable.
The phase and amplitude errors produced by the model can be and usually are minimized
by using very dense meshes. However, this makes the simulation complex and requires huge
computational resources. The main difficulties arising in ultrasonic measurement process sim-
ulation are caused by: (a) computational models of very large dimensionality (the smallest 2D
problems of any practical value require to use models consisting of 106–107 elements); (b)
very large number of time integration steps (inversely proportional to the linear dimension of
elements); (c) adequacy of finite elements models in representing continuum wave propagation
problems.

This work intends to develop an approach enabling to reduce the phase errors produced
by discrete wave propagation models. Obviously, the errors will be reduced if all the modes
of the continuous domain the frequencies of which are close to spectral components of the
wave pulse are represented correctly by the discrete model of the domain. In other words,
the refinement of the model has to be dense enough to ensure the convergence of the above
mentioned modes. If the convergence of necessary modes could be achieved in a mesh having
less nodal points, such a rough mesh could be used for modelling the short wave propagation
with no losses in accuracy.

As early as 1982 different modal frequency convergence features of dynamic models obtained
by using lumped and consistent forms of mass matrices have been noticed [1]. However,
only during the last decade this problem has been examined more thoroughly and practical
recommendations regarding the form of the mass matrix have been presented. The simplest way
to improve the convergence of modal frequencies of dynamic models is to use the ‘generalized’
form of the mass matrix obtained as a weighted superposition of the two traditional forms, [2].
In Reference [3] the dispersion effects of discrete solutions of propagating waves have been
analysed with the consistent, lumped and higher-order mass matrices. The penta-diagonal mass
matrix with reduced coupling has been obtained yielding improved phase and group errors,
and the generalized mass matrix has been shown to improve the dispersion characteristics of
both the reduced and full integration elements. The resulting mass matrices are non-diagonal,
however, considerable savings are obtained because of the possibility to use elements of larger
linear dimensions. Approaches concentrating on improvement of modal convergence properties
and retaining the diagonal form of the mass matrix have been presented as well [4–7]. The
basic idea was the re-distribution of the amounts of mass between the diagonal entries of higher
order elements.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2536–2554



2538 R. BARAUSKAS AND R. BARAUSKIENE

Modal synthesis is a modelling technique permitting a complex structure to be represented by
a reduced number of degrees of freedom (DOF). In most cases, the substructures are described
in terms of a limited number of modal displacements and subsequently the coupled system
of equations describing all the structure is obtained. The problem is that by direct coupling
of modes of free substructures, the modal convergence of the resulting dynamic model of the
whole structure is not always good. Appropriate methods of substructure coupling have been
developed [8],[9]. As a special case, modal synthesis may be used in order to obtain the
matrices of elements or substructures having the prescribed dynamic properties.

Generally, the non-diagonal mass matrices can be designed to produce models of higher
modal convergence rate than the diagonal ones. They require more computational effort to
obtain the transient solution by means of integration of the dynamic equations. However, the
total efficiency of the scheme improves as the required time step size becomes also greater with
the increase of the size of elements. By selecting the appropriate form of structural matrices,
the time step ensuring stability of an explicit integration scheme may become 2–5 times larger
as it was necessary when the models were based on the lumped mass matrix. In this way the
accuracy requirement and not the algorithmic stability governs the time step size selection.

This work presents a systematic way for obtaining the mass and stiffness matrices by modal
synthesis of a limited number of exact modes of a free component domain. In reality, analytical
expressions of exact modes are available only for domains of simple geometric forms. However,
more complex sub-domain shapes may be used as well by obtaining their lower modes in a
highly refined mesh. Such modes may be reasonably assumed to be ‘exact’ if we use this word
in an engineering sense rather than in the purely mathematical sense. Subsequently, the word
‘exact mode’ in this paper is being used to characterize modes the error of which is small
enough and practically may be disregarded in this application.

A certain number of modal shapes corresponding to exact modal frequencies are projected
on a rough mesh the number of DOF of which is equal to the number of the exact modal
frequencies available. The way the modal shapes can be projected upon a rough mesh is not
unique, and a proper method of approximation ensures the optimum result. The requirement
is to obtain the matrices of a small component domain of selected dimension such that af-
ter assembling the component domain matrices to a larger model the convergence of modal
frequencies of the latter should be as high as possible. The goal is achieved by formulating
the minimization problem for the penalty function representing the modal frequency error of
the sample domains and by applying the gradient method in order to minimize it. After the
optimum matrices of a component domain are obtained, they can be used in any structure as
higher-order elements or super-elements.

2. LUMPED, CONSISTENT AND GENERALIZED MASS MATRICES

Finite element models of small vibrations and waves in elastic or acoustic continua are presented
by the well known semi-discrete structural dynamic equation as

[M]{Ü} + [C]{U̇} + [K]{U} = {R(t)} (1)

where [M], [K]—structural mass and stiffness matrices of the element, {R}—nodal vector
containing the lumped forces. In problems addressed in this work we assume the damping
forces to be very small. If necessary, slight damping can be conveniently introduced by means

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2536–2554



HIGHLY CONVERGENT DYNAMIC MODELS 2539

of the proportional damping matrix [C] = �[M] + �[K]. The reason for such a simplification
is that in many ultrasonic measurement applications propagating pulses do not fade perceptibly
after travelling distances considered by simulations, as well as, the investigations are mainly
focused on the wave type transformations caused by reflections and interactions. Further in this
work we neglect the damping forces completely by taking � = � = 0.

When using explicit techniques for solving Equation (1), ∼ 17 mesh points per wavelength of
the highest harmonic component are generally recommended [10]. It can be easily demonstrated
that after travelling a distance of 20–50 pulse lengths the error in time of arrival and amplitude
of the pulse, as well as, the percentage of the amplitude of the leading and (or) lagging
numerical noise related to the amplitude of the pulse do not exceed 3–5%. Such solutions of
a propagating wave pulse can often be regarded as ‘practically acceptable’.

The latter estimation is valid for models with the ‘lumped’ (diagonal) version of the mass
matrix obtained by distributing the element mass in equal portions between the nodes of the
element. Very similar element size estimation is valid for consistent mass matrices. Though
consistent mass matrix models usually give better convergence for lower modes, the convergence
of higher modes is not significantly better as in the case of the lumped mass matrix. Therefore,
in practice lumped mass matrices are commonly used as requiring less computational resource
by using explicit time integration numerical schemes.

It is well known that lumped mass matrices [Me
L] have a tendency to produce diminished

values of all modal frequencies. On the contrary, consistent mass matrices [Me
C] produce

enlarged modal frequency values in the lower and mid-frequency range. The optimum choice
often is the generalized mass matrix obtained as the weighted sum of the two. Fundamental
results on this topic have been summarized in Reference [11] proving that the weights of
kC = kL = 0.5 for both the consistent and the lumped mass matrices enable to obtain the
‘higher order’ mass matrix. However, the best results can be obtained by selecting the weights
in accordance with the type of the element and also slightly depends upon the character
of the problem solved. In this work we obtained that nearly minimum distortions of a uni-
dimensional propagating wave pulse after travelling considerable distances can be obtained by
applying weights kC = 0.53; kL = 0.47. For rectangular elements of the two-dimensional
acoustic problem our choice has been kC = 0.7; kL = 0.3, as it will be discussed later
in Section 5 of this work. Such values kC; kL do not pretend to have a strict theoretical
background, however, they can be recommended on the base of visual inspections of obtained
solutions of typical propagating signals. As also we demonstrate in the following discussions,
the ‘nearly optimal’ choice of kC; kL has not necessarily to minimize the total modal frequency
error. Often it appears as preferable to minimize the error over a certain frequency range of
the modal spectrum specific for one or another class of problems. Practically, by using the
generalized mass matrix the performance of the model can be improved significantly. As a
result, the linear dimension of the element can be increased to 3–5 times in comparison with
the element dimensions required by the lumped mass matrix models. A deeper numerical study
is presented further in Sections 5.1 and 5.2.

3. MATRICES OF DOMAINS OBTAINED BY MODAL SYNTHESIS

The quality of performance of transient short wave propagation models depends heavily upon
the convergence rate of modal frequencies over all range, including mid-frequency and higher
modes of the domain.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2536–2554



2540 R. BARAUSKAS AND R. BARAUSKIENE

Definition
An ‘ideal’ n×n discrete model of wave propagation in a closed domain represents the modal
frequencies of all n modes close enough to exact modal frequencies of the continuous domain
of the same shape. Moreover, the correct representation of all n modal frequencies should be
satisfied for any value of n.

Under such condition the ‘wavelength against frequency’ relationship (‘the dispersion char-
acteristic’) of the discrete model of a linear domain is a straight line and the model is able to
represent the maximum number of spectral components of the investigated propagating wave
package correctly. Unfortunately, in reality the problem of making the model close to ‘ideal’ is
not simple and, may be, it is impossible to satisfy exactly the requirements posed in the above
mentioned definition. However, discrete models presenting good approximations to ‘ideal’ ones
can be built. Their matrices are non-diagonal, however, the element sizes can be increased
significantly.

Consider an unconstrained elastic or acoustic domain meshed uniformly and presented
by structural matrices of dimension N×N as [M]N×N, [K]N×N . In the following we call
it the ‘original model’. By solving the eigenvalue problem we obtain modal frequencies
�1, �2, . . . , �N and modal shapes [Y] = [{y1}, {y2}, . . . , {yN }]. Assume that first n modal
frequencies are good enough approximations to their exact values, however, n>N . Now we
build a new ‘rough model’ of dimension n×n of the same domain. The matrices of the rough
model possessing all n values of natural frequencies equal to those calculated from the original
model can be obtained by using modal synthesis technique as

[M̃] = ([Ỹ]T)−1[Ỹ]−1 = [M][Ỹ][Ỹ]T[M]
[K̃] = ([Ỹ]T)−1[diag(�2

1, �
2
2, . . . , �

2
n)] [Ỹ]−1 = [M][Ỹ][diag(�2

1, �
2
2, . . . , �

2
n)][Ỹ]T[M] (2)

where �1, �2, . . . ,�n are the lower modal frequencies of the original model of dimension
N×N , and [Ỹ] = [{ỹ1}, {ỹ2}, . . . , {ỹn}]—the lower modal shapes of the original model approx-
imated in the rough mesh. If the number of linearly independent modal shapes modes n and
the number of DOF of the rough model are equal, rank([M̃]) = n and no problems occur in
calculating [M̃]−1 necessary for implementing the direct integration scheme.

Relations (2) ensure that all n modal frequencies of the new rough model of the domain
have the values very close to exact, and, as a stand-alone model, it is ‘ideal’. However, our
goal is to use further the obtained model as a component domain in order to compose larger
joined domains. Unfortunately, the modal frequencies of the joined domain composed of several
such component domains, as a rule, will not be close to the exact values. The problem to be
solved now is as follows:

Problem 1
Obtain the matrices [M̃], [K̃] of a component domain such that the joined domain of any
geometric shape formed by assembling together the matrices of component domains would
have as many as possible exact values of modal frequencies.

The key to the solution of Problem 1 is that the matrices synthesized by using (2) are
not unique. Though we know all exact values of the modal frequencies of the rough model,
the higher modal shapes in the rough mesh are not able to approximate closely the exact
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Figure 1. Approximations of the exact modal shape of 1D domain in a rough mesh.

modal shapes available in the original mesh. Rather rough approximations inevitably have to
be made. In Figure 1 the explanation for the 1D case is presented that can be easily extended
to 2D and 3D cases as well. The higher modal shapes sometimes are not ‘correct’ physically,
however, they still have their influence upon the overall correctness of representation of greater
wavelengths. Aliasing of short wavelength signals with longer ones does not take place because
the modal synthesis relation (2) ensures the strict separation of the values of modal frequencies
corresponding to longer ‘physically correct’ waves from the physically fictitious waves of the
similar wavelength.

The least squares approximation is obtained by using the error minimum condition for ith
modal shape as

�
�{ỹe

i }

(
Nel∑
e=1

∫
V e

({yi (x, y, z)} − [Ñe(x, y, z)]{ỹe
i })T({yi (x, y, z)} − [Ñe(x, y, z)]{ỹe

i }) dV

)
= 0

(3)

where {yi (x, y, z)} is the displacement of point (x, y, z) on the ith exact modal shape, {ỹe
i }—

displacements of ith modal shape of element e in the rough model, [Ñe(x, y, z)]—form func-
tions interpolating the displacement field within element e of the rough model, Nel—number
of elements of the rough model.

From (3) the equations for each element are obtained as

[Ãe]{ỹe} = {b̃e}
where

[Ãe] =
∫

V e

[Ñe]T[Ñe] dV, {b̃e} =
∫

V e

[Ñe]T{yi (x, y, z)} dV
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The element matrices [Ãe], {b̃e} are assembled in order to form the structural matrices of
the entire component domain and finally ith modal shape of the rough model is obtained by
solving the equation

[Ã]{ỹi} = {b̃} (4)

The modal shapes in the rough mesh can be obtained by using different approximating
functions [Ñe]. As the first choice we take form functions [Ñe

c] of the element. In this way
we take into account the interpolated displacements over all volume of the element in order
to determine the approximation error (3). Alternatively, functions [Ñe

�] may be used containing
�-functions Ve/ne �(xi, yi, zi), where Ve—volume of the element, ne—number of nodes of the
element. By using [Ñe

�] as interpolation functions, only displacements of nodes of the element
are taken into account when determining the approximation error (3).

For the 1D element the above mentioned functions read as [Ñe
c] = [

1 − x
l
; x

l

] ; [Ñe
�] =[

Al
2 �(0); Al

2 �(l)
]
. Note that [Ñe

c] and [Ñe
�] are the form functions used in consistent and

lumped mass matrix formulations correspondingly, so the analogy between the two forms of
error approximation and the two forms of the mass matrix is evident.

The best result is obtained by combining both types of functions as [Ñe] = �l
i[Ñe

�]+ (1−�l
i )

[Ñe
c], where 0 < �l

i < 1 is the coefficient used for approximation of ith modal shape. In
practical computation, the coefficient matrix and the right-hand side vector used in (4) have
different values for each mode and are obtained by combining the consistent and lumped forms
of matrix [Ãe] as

[Ã] = �l
i[Ãl] + (1 − �l

i )[Ãc] (5)

and of vector {b̃e} as

[b̃] = �l
i

Ve

ne

{ỹil} + (1 − �l
i )[b̃c] (6)

where [Ãc], [b̃c]—the consistent forms of the matrix and vector obtained by using approx-
imation functions [Ñe

c], [Ãl]—lumped form of the matrix obtained by using approximation
functions [Ñe

�], {ỹil}—ith modal shape of the rough model the displacements of which coin-
cide with the displacements of exact modal shapes at nodal points of the rough mesh, see
curve (-o-) in Figure 1.

The values of �l
i may be selected for each ith mode individually, or the same value for all

modes may be used. Anyway, the selection of �l
i value offers a certain amount of flexibility

in defining the modal shapes of the rough model and may be used as ‘design parameters’ in
order to obtain the model of a component domain able to produce the best spectral properties
of joined domains. Simultaneously, the correct physical essence of the modes approximated in
the rough mesh is preserved at any value of �l

i ∈ [0; 1].

4. OPTIMUM SPECTRAL PROPERTIES OF COMPONENT DOMAINS

A joined domain obtained by assembling together ‘ideal’ component domains may have sig-
nificant modal frequency errors. Much better spectral properties of the joined domain may
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be obtained by assembling component domains that have slightly distorted modal spectrum
with respect to the ‘ideal’ one. In following we develop a systematic approach to optimally
modify the spectral properties of a component domain in order to produce the minimum modal
frequency error of joined domains.

Consider a component domain the matrices of which are obtained by using (2). Its n modal
frequencies can be presented as 0, . . . , 0, �r+1, �r+2, . . . , �n, where r—number of rigid body
modes, and its n modes read as [Ỹ] = [{ỹ1}, . . . , {ỹr}, {ỹr+1}, . . . , {ỹn}]. The spectral properties
of the model of the domain can be slightly changed by modifying the values of modal
frequencies, as well as, the modal shapes. The modifications must preserve the physical essence
of the finite element model of an unconstrained domain, i.e. the lower r modal frequencies
have to be zeroes, and the modal shape vectors have to be orthogonal and express essentially
the same shapes as before the modification. Also the total mass of the domain must remain
unchanged.

The above mentioned requirements will be satisfied if the modal frequencies will be modified
as

[diag(0, . . . , 0, ��
r+1�

2
r+1, �

�
r+2, �

2
r+2, . . . , �

�
r+n�

2
n)] = [diag(�2)]{��} (7)

and the modal shapes modified as

[{ỹ1}, . . . , {ỹr}, �y
r+1{ỹr+1}, . . . , �y

n{ỹn}] = [Ỹ]{�y} (8)

where {��}T = {1, . . . , 1, ��
r+1, . . . , �

�
n }, {�y}T = {1, . . . , 1, �y

r+1, . . . , �
y
n} are coefficients the

values of most of which are close to unity.
Finally, we reformulate the above mentioned Problem 1 as follows: Find the values of

coefficients {��}, {�y} and �l
i , i = 1, . . . , n, determining the modal properties of a single

component domain that minimize errors of modal frequencies of the joined domain obtained
by joining together several component domains.

Consider a joined domain presented by structural matrices of dimension N̂ × N̂ as [M̂]
N̂×N̂

,

[K̂]
N̂×N̂

assembled of component domain matrices [M̃]n×n, [K̃]n×n. The solution of the eigen-
value problem of the joined domain gives the modal frequencies �̂1, �̂2, . . . , �̂N̂

and modal

shapes [Ŷ] = [{ŷ1}, {ŷ2}, . . . , {ŷN̂
}].

The modal frequency error minimization problem can be formally presented as

min
{��}, {�y },�l

k

� (9)

where the penalty-type target function presents the cumulative modal frequency error and reads
as

� =
N̂∑

i=r+1

(
�̂i − �̂i0

�̂i0

)2

where �̂i—modal frequency of ith mode of the joined domain, �̂i0—exact value of the modal
frequency of ith mode, known theoretically or obtained by using a highly refined finite element
model.

To solve (9) for a real computational domain in a general case seems to be rather expensive
and hardly reasonable. In reality we do not try to optimize the domain matrices by assembling
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the matrices of the whole real computational domain. A reasonable choice is to perform
optimization by assembling component domains into sample domains the modal frequencies of
which are known, and then to use the obtained matrices of component domains for assembling
the real computational domains. We did not present any theoretical proof of the validity of this
approach, however, numerical experiments illustrate that it works.

Good results may be achieved by improving the component domain matrices step by step
as follows

(1) A sample domain of a regular shape (linear, rectangular, triangular) is selected, the
sufficiently large number of exact modal frequencies of which is known. For example, for
linear and rectangular elastic and acoustic domains such modal frequencies are available
analytically. In other cases a highly refined model of the sample domain can be used in
order to obtain ‘nearly exact’ (say, < 0.5%) modal frequency values.

(2) If the sample domain is represented by a single roughly meshed component domain, the
solution {��} = 1, {�y} = 1, �l

i = 1, i = 1, . . . , n ensures the minimum of the target
function as � = 0.

(3) The sample domain is represented by two component domains and problem (9) is being
solved by taking the solution obtained in step 2 as an initial approximation. As a result,
new values of {��}, {�y}, �l

i , i = 1, . . . , n are obtained.
(4) After that we analyse the sample domain made of three and more component domains,

etc.

The number of such optimization steps is practically determined by a reasonable amount of
calculations. Our numerical experiments demonstrate that for uni-dimensional case it is enough
to perform optimization on the joined domain consisting of only three component domains,
and the optimized matrices of a single component domain work well if a considerably larger
structure is assembled.

Optimization calculations are rather expensive. If the sample domain consists of more than
one component domains, the minimum of the target function � is not easy to find. The target
function minimization process can be facilitated by calculating the derivatives of function �
with respect to variables {��}, {�y}, �l

i = 1, i = 1, . . . , n. The vector containing the full set
of the derivatives is called as the gradient of function � which is used as the search direction.

For implementing the optimization method based on the gradient, the sensitivity functions

��

�{��} ,
��

�{�y} ,
��

��l
j

, j = 1, . . . , n

are employed. The gradient calculation techniques when applied to structural dynamics opti-
mization problems are thoroughly discussed in the fundamental work [12]. The basic variation
relations for obtaining the gradient read as

�� =
N̂∑

i=1

�̂i − �̂i0

�̂2
i0�̂i

��̂2
i (10)

��̂2
i = {ŷi}T

(
�[K̂]
��

− �2
i

�[M̂]
��

)
{ŷi}��; � = �y

j , �
�
j , �l

j , j = 1, . . . , n (11)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2536–2554



HIGHLY CONVERGENT DYNAMIC MODELS 2545

Figure 2. (a) Modal frequencies of the same uni-dimensional domain against the
number of DOF of the model; and (b) relative modal frequency errors. Positions of

markers correspond to modal frequencies.

5. NUMERICAL INVESTIGATIONS

5.1. Dynamic properties of models using lumped, consistent and generalized mass matrices of
a uni-dimensional waveguide

We begin the modal convergence analysis with the uni-dimensional waveguide models. Modal
frequencies of the same uni-dimensional domain obtained by using models of different mesh
density are presented in Figure 2.

Each curve in Figure 2(a) demonstrates how the value of a particular modal frequency
depends upon the number of DOF of the model. By increasing the number of DOF, the curves
are asymptotically approaching the dashed lines marked by crosses that present theoretical values
of modal frequencies obtained as �i0 = �(i − 1)/ l

√
E/�, where E, �—stiffness modulus and

density of the material, l—length of the waveguide, i—number of the mode. Markers on the
same solid line correspond to frequencies of different modes obtained by using the same model.
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The lumped mass matrix [ML] models always give diminished values of modal frequencies,
whereas the consistent mass matrices [MC] always cause the oversized values. Generally, the
behaviour of models using the generalized mass matrix [M] = kC[MC] + kL[ML] depends
upon the weight coefficient values kC, kL. Here we present the results obtained by using one
of reasonable choices of the generalized mass matrix (kC = 0.53; kL = 0.47) ensuring the
minimum relative error of lower and middle modal frequencies. In order not to overload the
picture, only modal frequencies of the 3rd, 4th, 5th and 6th modes are presented in Figure 2(a)
for models using lumped, consistent and generalized forms of the mass matrix. However, the
same character of relationships holds for all remaining modes as well. The left-hand end of
each curve in Figure 2(a) presents the highest modal frequency obtainable by using the model
of the particular dimension.

The relative modal frequency errors as (�i − �i0)/�i0 may be examined in Figure 2(b).
The error of the zero-mode (i = 1) is negligible in the case of any form of the mass matrix
as the eigenvalue very close to zero is always obtained because of the singular stiffness matrix
of an unsupported structure. It is interesting to note that the relative errors of the very highest
frequency given by using models of any dimension are constant and individual for each form of
the mass matrix. The values of the highest modal frequency errors are ∼ 37% for the lumped
mass matrix and only ∼10% for the consistent one. However, the maximum errors (∼20%)
obtained by using the consistent matrices are in the middle modal frequency range rather in
the higher one. Very similar modal frequency error values in the middle frequency range are
obtained also by using the lumped mass matrix. Though the total modal frequency error of
consistent mass matrix models is less than of the lumped ones, practically both models produce
very similar level of errors in the wave pulse propagation modelling.

The performance of the considered models in short wave pulse propagation modelling is
illustrated in Figure 3. For the sake of comparison in Figure 3(a) the ‘exact’ solution is
presented. Practically, the solution obtained by using a dense mesh (∼35 nodes per wavelength)
can be reasonably treated as exact one for comparison purposes in order to evaluate the accuracy
of solutions obtained in coarser meshes. The shape of the wave is presented at the time point
of the fourth passage of the wave along the waveguide (the wave is three times refracted
from the ends of the waveguide, see the scheme of the ‘path of the wave’ at the top of the
figure). In our computations we used the central difference time integration scheme with the
CFL number c�t/�x ≈ 0.1, where c—wave propagation velocity, �t, �x—time and space
step sizes. Every result has been checked for convergence of the time integration scheme by
recalculating it with twice less time step and comparing the results for coincidence. Therefore
the distortions of wave pulses presented here are caused by spectral properties of the discrete
model and surely not because of the time integration errors.

In Figures 3(b) and (c) the distorted wave pulse shapes corresponding to the lumped and
consistent mass matrix models are presented. The character of distortions is different in each
case. The lumped mass matrix models are inclined to generate the numerical noise that follows
the main signal, whereas the consistent matrix models produce the numerical noise propagating
in front of the pulse. However, the amount of distortion is very similar. A rough mesh having 12
nodes per pulse length has been selected for demonstrating the behaviour of the models in
order to make the distortions clearly visible. The same characteristic numerical noise is more or
less observed in models of any mesh roughness. The generalized mass matrix models produce
errors presented by lines marked by dots in Figure 2(b). While having errors of ∼20% for the
very highest frequency, their modal frequency errors in lower and middle frequency range are
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Figure 3. Typical distortions of the shape of a propagating wave pulse in a rough equally spaced
mesh: (a) ‘exact’ solution of a propagating wave pulse excited by one period of harmonic forcing law
at the left-hand end of the waveguide; (b) obtained by using roughly meshed model (12 modal points
per wavelength) with the lumped mass matrix; (c) obtained by using roughly meshed model with
the consistent mass matrix; and (d) obtained by using roughly meshed model with the generalized

mass matrix as [Me] = 0.53[Me
C] + 0.47[Me

L].

about 10 times less when compared with the two traditional models. The practical result of
this can be seen in Figure 3(d) demonstrating the distorted pulse shape at the same propagation
conditions and mesh density as in Figures 3(b) and (c). As mentioned above, here we analyse
the mesh density of 12 nodes per wave pulse length excited by a single period of a harmonic
signal (note that the frequency of the highest harmonic component participating in presenting
the single-period shaped pulse is at least three times greater than the main frequency). So,
in reality we used only ∼ 4 nodes per shortest wavelength. The pulse shown in Figure 3(d)
is still distorted by a certain amount (though quite small) of the leading and lagging noise
(compare with the ‘exact’ version of the pulse in Figure 3(a)). By changing the values kC, kL
the amounts of the leading/lagging noise can be changed. What is presented in Figure 3(d)
is nearly the ‘optimum’, at least from the visual inspection standpoint. It demonstrates clearly
that the effect of using generalized matrices is really considerable.

The behaviour of the errors is actually consistent with the phase velocity errors in the mid-
range of the discrete spectrum. The phase velocity is the velocity with which the harmonic wave
of a certain frequency is travelling along the waveguide and is defined as vf = �/k, where
� is the wave frequency, and k is the wave number. The expression holds in the case of a

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2536–2554



2548 R. BARAUSKAS AND R. BARAUSKIENE

Figure 4. (a) Relative modal frequency errors of an uni-dimensional waveguide; and (b) distortion of
a propagating wave pulse in the case of the generalized mass matrix [M] = 0.74[MC] + 0.26[ML]

minimizing the cumulative (SRSS) relative modal error.

standing wave that may be expressed as a superposition of the propagating and reflected waves.
In the same way the phase velocity of the ith mode is defined as vf i = �i/ki , where �i is the
modal frequency, and the wave number ki is established by analysing the corresponding modal
shape. So, in finite element-based wave propagation models the phase velocities of different
modes are slightly different from the exact values mostly because of the modal frequency
errors. Therefore different harmonic components of the same wave pulse are traveling through
the model with different phase velocities and do not arrive to some considered point at the
same time. As a result, after some propagation time the pulse shape is distorted and also the
‘noise’ in front of and(or) behind the pulse appears.

The total modal frequency error can be minimized by choosing the values of coefficients
kC = 0.74; kL = 0.26. However, the results presented in Figure 4 demonstrate that the model
gives much greater pulse shape distortion as in the case kC = 0.53; kL = 0.47 presented in
Figure 3(d). Obviously, it is much better to ensure negligible modal frequency errors in low and
middle frequency range than to ‘distribute’ the error among all modes. The latter conclusion
can be considered as a general one and may be used for establishing the modal frequency
error minimization criteria for all types of the synthesized mass matrices.

5.2. Properties of models using lumped, consistent and generalized mass matrices of an
acoustic problem in a square shaped closed cavity

As a two-dimensional example we present the modal frequency error relationships for the
acoustic problem formulated in a square shaped closed cavity. The exact modal frequencies
can be expressed as

�(m,n)0 = �

√
E

�

√(m

a

)2 +
(n

b

)2
where a, b–lengths of the sides of the rectangular. Here the square domain is being analysed,
a = b. The basic properties of models described by using different forms of mass matrices are
briefly explained in Figure 5. Relative modal frequency errors of the square domain obtained
by using the consistent, lumped and generalized mass matrices are presented in Figure 5(a).
Qualitatively, the general character of the curves is very close to the results obtained for a
uni-dimensional domain presented in Figure 2(b). Evidently, there exists an optimum weighted
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Figure 5. (a) Modal frequency errors of an acoustic problem in 2D square shaped closed cavity;
and (b) relationships of average relative errors of modal frequencies against the weight coefficient

of the consistent component.

combination of the generalized and lumped matrices [M] = kC[MC] + kL[ML]. The reasoning
for the choice of value kC can be understood from Figure 5(b), where the relationships of
average modal frequency error taken as square root of sum of squares

1

N

√
N∑

i=1

(
�i − �i0

�i0

)2

against the value kC are presented. Each curve describes the cumulative error values obtained
by taking sums over a different number of modes: N (summation over all modes), 3 ∗ N/4,
N/2, etc. As it is impossible to get very small error values over all modal frequency range,
the optimum values of kC are slightly different in each case. Practically, for minimum
numerically caused distortion of propagating wave pulses a reasonable choice is
kC = 0.7, kL = 1 − kC = 0.3.

5.3. Optimization of the modal spectrum of component domains

Consider a wave pulse propagating along a uni-dimensional elastic waveguide. The finite element
model of the waveguide consists of NSUB uni-dimensional component domains joined at their
ends. The domains are all identical and presented by stiffness and mass matrices obtained by
using the modal synthesis technique described in Section 3. Examine the dynamic properties of
models of approximately the same size NT ≈ 60 dynamic DOF obtained by joining together
component domains the number of DOF of each is n such that NT = (n−1)×NSUB+1 ≈ 60.
It means, we analyse the model consisting of the single domain containing n = 60 dynamic
DOF, or assembled of two domains containing n = 31 dynamic DOF each, or made of 3
domains containing n = 21 dynamic DOF each, etc (Figure 6).

The aim of investigation is to synthesize matrices of component domains producing the
‘optimum’ modal frequency errors of joined domains (as discussed in Section 5.1, minimum
cumulative error is not the optimum) ensuring as small as possible distortions of propagating
wave pulses. The ultrasonic pulse is being excited at the left-hand end by the force developed
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Figure 6. Scheme of a uni-dimensional wave pulse propagation model
made of NSUB component domains.

by the input transducer. As a rule, the width of the spectrum of pulses usually used ultrasonic
measurements contain harmonic components up to 2.5 − 3�, where �—the frequency of the
main harmonic component of the pulse.

For illustrating the basic ideas we consider a uni-dimensional waveguide model (64 nodes in
total) assembled of 7 component domains having 10 nodes each. Optimization of matrices has
to be performed on the base of the penalty-type target function of the domain assembled of at
least 3–4 component domains or more. Optimization of matrices of large component domains
is a time consuming task as the modes of all joined domain have to be calculated at each
optimization step.

In Figure 7 modal frequency errors (�̂i − �̂i0)/�̂i0 of the waveguide model are presented.
As described in Section 4, component domains having all modal frequencies equal to their exact
(theoretical) values are obtained by taking the modal frequency and modal shape correction
coefficient values as ��

i = �y
i = �1

i = 1. However, such component domain matrices assembled
to a joined domain produce poor results. Figure 7(a) demonstrates the up to 4% modal frequency
error values of the joined domain distributed over all modal frequency range. If more component
domains are used to form the joined domain, modal frequency errors increase even more and
the model performs worse than the models using the generalized mass matrix.

The modal frequency error of the joined domain is minimized by using the method described
in Section 4. If the matrices of 10-node component domains are designed in order to ensure
the minimum of the target function � = ∑64

i=1 ((�̂i − �̂i0)/�̂i0)
2 (i.e. by taking the sum over

N̂ = 64 modes of the joined domain), we obtain the result presented in Figure 7(b). It is
clear that the eight higher modal frequency values (comprising about 12% of the total number
of modes of the model) cannot be made close enough to the theoretical ones. Even better
results are obtained by carrying out the optimization process of the target function where the
sum is taken over only N̂ = 55 modes, see Figure 7(d). The minimization parameters are
��
i ; �y

i ; �l
i , i = 2, . . . , N̂ . The non-unity ��

i values mean that the component domains have
to have the modal frequencies not equal to the theoretical ones. If we enforce the requirement
��
i = 1 and carry out the optimization only in space of parameters �y

i ; �l
i , i = 2, . . . , N̂ , the

result is presented in Figure 7(c) and is significantly worse than the one in Figure 7(d). The
detuning of modal frequencies of the component domain from their theoretical values can be
regarded as an inherent requirement for synthesizing optimum dynamic models.

It is very important that the optimized component domain models preserve their features
when being used in a joined domain models of any dimension. Without any theoretical proof
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Figure 7. Modal frequency errors of a uni-dimensional waveguide model (64 nodes in total)
assembled of 7 component domains of 10 nodes each: (a) non-optimized case: matrices of
component domains obtained by using coefficient values �e

i = �y = �l
i = 1; (b) optimized

by taking the sum over all N̂ = 64 modal frequencies of the joined domain; (c) optimized
by taking the sum over all N̂ = 55 modal frequencies of the joined domain (exact modal
frequencies of the component domain preserved); and (d) optimized by taking the sum over
all N̂ = 55 modal frequencies of the joined domain (modal frequencies of the component

domain detuned from their theoretical values).

we merely present illustration of this in Figure 8, where the obtained 10-node component
domains were used in order to make the joined domains of different size. The distribution of
modal frequency errors over all the modal frequency range and the percentage of error-free
modes is independent from the dimension of the joined domain, therefore component domain
matrices can be treated as high order well-convergent elements.

Figure 9 presents the modal frequency errors of a joined domain assembled of optimized
component domains of different size. The advantage of synthesized component domains in
comparison with the generalized mass matrix is obvious. The generalized mass matrix models
are able to produce about 35% error free modal frequencies of the joined domain, meanwhile the
models based upon 10-node component domains provides 86% of error free modal frequencies.
On the other hand, not all the sizes of component domains can be optimized to give the
result of the same quality. E.g. in our investigations we distinguished component domains of
dimension 5 and 10 as producing the highest percentage of error free modes. The increase
of the component domain dimension to 15, 20 and 30 does not give any advantage as the
percentage of correctly represented modes in joined domains does not increase any more, see
Figure 9(b).
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Figure 8. Modal error distribution in joined domains assembled of 6 (a and c) and 24 (b and d) 11-node
component domains presented by optimized matrices: 6 (a), (b)—optimized by taking the sum over all
N̂ = 64 modal frequencies of the joined domain; and 6 (c), (d)—optimized by taking the sum over

all N̂ = 55 modal frequencies of the joined domain.

Figure 9. Modal errors of a joined domain assembled of several component domains: (a) 30 DOF
models assembled of humped, consistent, generalized mass matrices and optimized component
domains of dimension n = 5 and 10; and (b) 240 DOF models assembled of component domains

of dimension n = 5, 10, 15, 20 and 30.
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Figure 10. Shape distortion of a propagating wave pulse in the model assembled of seven
10-node component domains length. Nodes of the mesh per pulse length: (a) 12 nodes;

(b) 7 nodes; (c) 5-nodes; and (d) 4 nodes.

The performance of the 10-node component domain used in the 64 nodes model of the
waveguide simulating the wave pulse propagation is presented in Figure 10. The figure presents
the shape distortion of the propagating wave pulse after ∼ 3.5 passages through the joined
domain of the waveguide (see the path of the wave at the top of Figure 10(a)). 12 or even
7 nodes per pulse length are enough for simulating the pulse propagation over quite a large
distance, Figure 10(a) and (b). The model actually works satisfactorily also at very rough
meshes of 5 or 4 points per pulse length, Figure 10(c) and (d). At the same conditions, the
conventional lumped or consistent mass matrix models produce the numerical noise larger then
the signal itself and no resemblance of the pulse shape would be seen in the picture.

6. CONCLUSIONS

A regular approach has been presented for obtaining the mass and stiffness matrices of com-
ponent domains such that after assembling the component domain matrices to a larger model
the convergence of modal frequencies is as high as possible. The method is based upon the
minimization of the modal frequency errors of some selected sample domains and then using
the obtained component domain matrices for assembling the real computational domains. The
best performance is obtained by using the component domains the modal frequency spectrum
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of which is appropriately detuned from their theoretical values. The obtained mass matrices
are non-diagonal. Once calculated, the component domain matrices can be used to form any
structure and may be interpreted as higher-order elements or super-elements. The latter result
has not been proved theoretically, however, illustrated by numerical examples.

When compared with lumped, consistent or generalized mass matrices, the matrices obtained
by modal synthesis and optimization produce significantly better results. The models able to
present very close-to-exact (less than 0.5% error) modal frequency values of more than ∼80%
of the total modal frequency number can be obtained. Though the method is illustrated basically
by means of uni-dimensional examples, it is formulated for 2D and 3D domains as well.

The obtained dynamic models can be used primarily for modelling short transient waves
and wave pulses propagating in elastic or acoustic environments. The distinguishing feature
of such models is their ability to present the wave pulse by using very few nodal points per
wavelength.

The natural limitation of the presented approach is that it is oriented to produce very
efficient discrete models of large uniform zones of structures in which the wave propagation is
investigated. Actually, the most efficient application may be found in implementing models based
on the domain decomposition, where large uniform domains can be presented by means of rough
meshes and considerable computational resource savings may be obtained. In irregular zones
they can be joined with conventional finite element meshes. The matrices of each component
domain are fully populated, and any transformation of them to the diagonal form can make
the modal convergence worse. Therefore a reasonable choice is to use well-optimized small
component domains.
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